

ASTM

ASTM International, formerly known as the American Society for Testing and Materials, was founded in 1898 and is headquartered in West Conshohocken, Pennsylvania, USA. It is an international standards organization.

ASTM has developed over 12,000 standards covering metals, plastics, construction materials, petroleum, medical devices, and other fields to ensure product quality and consistency.

ASTM collaborates with ISO, ANSI, SAE, ASME, and other organizations to promote standard harmonization and global standardization development.

ASTM Standard Naming Method and Structure

- 1) Standard Code: ASTM.
- 2 Letter Classification Code: (Refer to page 4).
- ③ Standard Serial Number: A standard serial number with the letter "M" indicates a metric standard, while one without "M" indicates an imperial (inch-pound) standard. Example: ASTM C685/C685M-2001 is a metric standard.
- ④ Establishment Year (Revision Year): The year in parentheses after the establishment year represents the standard's reapproval year. Example: ASTM A605–72(1977) indicates that the specification was originally published in 1972 and reapproved in 1977 without content changes.
- S Revision Version: a, b, c... represent revision versions. Example: ASTM A36–77a (Refer to page 4).

2 Letter Classification Code

Category A: Ferrous metals (ferrometallic)

Contain: carbon steel, alloy steel, cast steel, cast iron Use: For structural, mechanical processing, mold, wear-resistant applications

Standard	Steel Grade	Application
ASTM A36	Structural Steel	Buildings, Bridges, Mechanical Structures
ASTM <mark>A</mark> 572	High–Strength Low– Alloy Steel (HSLA Steel)	Construction, Engineering, Machinery
ASTM A514	Wear-Resistant Steel / Abrasion-Resistant Steel	Mining Equipment, Mechanical Structures
ASTM A108	Carbon Steel Bar	Mechanical Parts, Turning Processing
ASTM A681	Tool Steel	Cutting Tools, Molds
ASTM A295	Bearing Steel	Rolling Bearings, Machine Shafts
ASTM A536	Ductile Cast Iron	Compressor Housings, Gears
ASTM A48	Gray Cast Iron	Motor Housings, Valve Bodies

Category B: Non-ferrous metals and alloys

Includes: Copper, Aluminum, Magnesium, and Their Alloys Application: Suitable for conductivity, corrosion resistance, and lightweight applications

Standard	Steel Grade	Application
ASTM B209	Aluminum Plate	Aerospace, Construction, Automotive
ASTM B221	Aluminum Extrusions	Engineering Structures, Mechanical Components
ASTM B103	Copper Alloy	Electrical Components, Bearings
ASTM B505	Copper-Aluminum Alloy	Corrosion–Resistant Parts

Category C: Material Testing and Analysis Standards

Includes: Metal material testing methods, non-destructive testing, corrosion resistance testing

Application: Suitable for quality inspection, material research, and failure analysis

Standard	Steel Grade	Application
ASTM <mark>A</mark> 370	Metal Mechanical Properties Testing	Used for testing tensile strength, impact resistance, and hardness properties
ASTM E8	Tensile Test	Te <mark>sts</mark> tensile strength and yield strength
ASTM E10	Brinell Hardness Test	Tests hardness
ASTM E18	Rockwell Hardness Test	Tests surface hardness
ASTM E23	Charpy Impact Test	Tests low-temperature impact toughness
ASTM E92	Vickers Hardness Test	Tests hardness of small components
ASTM E466	Fatigue Test	Tests material lifespan
ASTM G101	High– <mark>Strength Low–</mark> Alloy Steel (HSLA Steel)	Tests corrosion resistance of steel

This classification method is primarily applicable to steel materials and testing standards, making it more suitable for metal processing, mechanical engineering, and material inspection. Unlike ASTM's official 16–category standard system, this classification is based on the practical needs of the steel industry, enabling engineers and technical personnel to quickly identify and apply relevant standards.

(4) Establishment Year (Revision Year)& (5) Revision Version

- Establishment Year or Latest Revision Year: The number following the specification code indicates the year the specification was established or the latest revision year.
 Example: A36-77 → Revised in 1977 A276-19 → Revised in 2019
- Revision Version:
 If a lowercase letter (a, b, c...) follows the year, it indicates the Xth revision within that year.
 Example:
 A36-77a → Second revision in 1977

A36–77b → Third revision in 1977

ASTM Standard Naming Method

Example: ASTM A36-77a

 Indicates the "second revision" within the year 1977.

Indicates the "year," revised in 1977.

 Indicates "ferrous metals" category and "structural steel"

* The second revision of the A36 specification was published in 1977.

If a specification is tentative, the letter "T" is added after the year.
 "T" indicates that the standard was still in a tentative or

provisional stage at the time (e.g., 1960) and had not yet become an official ASTM standard.

It might undergo further modifications based on subsequent testing and practical applications before formal publication.

This marking was more common in older ASTM standards.

Example:

ASTM A36-60T

Tentative nature, still in the testing phase

Year, established in 1960

Specification number for structural steel

* Indicates that A36 was established in 1960 as a tentative specification.

Gray Cast Iron

Example:

ASTM A48-20

- Ferrous Metals (Cast Iron)
- Standard Number (Represents "Gray Cast Iron")
- Revised in 2020

Tensile Testing Method Standard

Example:

ASTM <u>E8-21</u>

- Testing Methods Category
 Standard Number
 - (Represents "Tensile Testing Method")
- Revised in 2021

Tool Steel Standard

Example:

ASTM M2

- - Material Number
 - Tool Steel Category

Labeling	Material Type	
А	Air–Hardening Medium Alloy Cold Work Tool Steel	
D	High Carbon High Chromium Cold Work Tool Steel	
F	C–W Tool Steel	
H1	Medium Carbon High Chromium Hot Work Die Steel	
H2	W-Series Hot Work Die Steel	
H4	Mo-Series Hot Work Die Steel	
	Low–Alloy Special–Purpose Tool Steel	
М	Mo-Series High-Speed Tool Steel	
0	Oil–Hardening Cold Work Tool Steel	
Р	Low Carbon Tool Steel	
S	Shock–Resistant Tool Steel	
Т	W–Series High–Speed Tool Steel	
W	Water–Hardening Tool Steel	

AISI

The American Iron and Steel Institute (AISI) is a key industry association representing U.S. steel producers.

AISI's primary objectives include collecting and disseminating statistical data and information for industry stakeholders, conducting industry research, providing a forum for discussing critical issues, and safeguarding the interests of the steel industry.

Initially responsible for steel classification, AISI no longer develops standards, with SAE now handling updates. Three-digit (3-digit) codes are primarily used for stainless steels (300 and 400 series).

AISI Early Numbering System

AISI Specifications vs. SAE Specifications

AISI specifications are generally similar to SAE specifications, but AISI includes an additional prefix letter before the numerical code to indicate the steelmaking process.

For example: AISI C 1045 indicates that the steel was produced using the **basic open-hearth process**.

The steelmaking process codes include five letters (A, B, C, D, E), with their meanings as follows:

First Letter	Representation Meaning	
А	Basic Open-Hearth Alloy	
В	Acid Bessemer Carbon	
С	Basic Open–Hearth Carbon	
D	Acid Open–Hearth Carbon	
Е	Electric Furnace	

Example:

AISI A 2340 indicates a nickel alloy steel produced using the basic open-hearth process.

- ◆ Nickel content: Approximately 3% (actual range: 3.25–3.75%).
- ◆ Average carbon content: 0.40% (actual range: 0.38–0.43%).

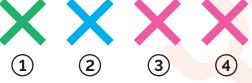
AISI Stainless Steel Naming Method

AISI (American Iron and Steel Institute) uses a "three–digit" numbering system to designate various standard grades of stainless steel.

Series	Main Composition	Microstructure
200 Series	Cr–Ni–Mn (Chromium–Nickel–Manga <mark>ne</mark> se)	Austenitic
300 Series	Cr–Ni (Chromium–N <mark>ic</mark> kel)	Austenitic
400 Series	Cr (Chromium)	Ferritic Martensitic

Example:

AISI 316 Serial Number (Represents Cr-Ni-Mo Stainless Steel) Material Category (300 Series) Hardened Stainless Steel Hardened Stainless Steel Cr-Mn-Ni-N Austenitic Stainless Steel Cr-Ni Austenitic Stainless Steel High-Cr Martensitic Stainless Steel Low-C High-Cr Ferritic Stainless Steel Low-Cr Martensitic Stainless Steel


SAE

Society of Automotive Engineers (SAE International) was founded in 1905 and is a key organization in the global automotive, aerospace, and commercial vehicle engineering fields.

SAE develops standards for materials, mechanical, and electronic technologies, while also providing technical research and educational training.

Its standards are widely applied and are developed in collaboration with ISO, ASTM, and other organizations to advance engineering technology.

- SAE is responsible for the naming of carbon steel and alloy steel, using a four-digit (4-digit) coding system, primarily applied in machinery, automotive, and aerospace steels.
- The SAE steel numbering system uses four-digit numbers to represent steel grades:

First Digit: Primary Alloying Element Type

- 1 Carbon Steel 2 Nickel Steel 3 Nickel-Chromium Steel
- 4 Molybdenum Steel 5 Chromium Steel
- 6 Chromium-Vanadium Steel 7 Tungsten Steel
- 8 Nickel-Chromium-Molybdenum Steel
- 9 Silicon-Mangane<mark>se Steel</mark>

Example: 2320 – The first digit "2" indicates Nickel Steel.

Second Digit: Alloying Element Content Example: 2320 – The second digit "3" indicates approximately 3% Nickel content.

> Third and Fourth Digits: Carbon Content (in 0.01% units) Example: 1095 – Carbon Steel,

> > with an average carbon content of 1%.

Practice Examples:

1

3

2320 – Nickel Steel, with an average nickel content of 3.0% and an average carbon content of 0.20%.

- 4130 Nickel–Chromium Steel, with an average nickel and chromium content of 1.0% and an average carbon content of 0.30%.
- 6150 Chromium–Vanadium Steel, with an average chromium and vanadium content of approximately 1.0% and an average carbon content of 0.50%.

Introduction to the SAE/AISI Designation System

 The SAE designation system uses a straightforward four-digit numbering scheme, with some alloy steels using five digits (51XXX; 52XXX). The system's structure is as follows:

Carbon Steel Classifications

10xx series: Plain carbon steels (1.00% Mn maximum) 11xx series: Resulfurized carbon steels 12xx series: Resulfurized and rephosphorized carbon steels 15xx series: Non–resulfurized high–manganese carbon steels (up to 1.65%)

Alloy Steel Classifications

The first digit indicates the primary alloying element:

2xxx: Nickel steels

3xxx: Nickel-chromium steels

4xxx: Molybdenum steels

5xxx: Chromium steels

6xxx: Chromium-vanadium steels

7xxx: Tungsten-chromium steels

9xxx: Silicon-manganese steels

Additional Designations

Special letter designations provide further classification:

B: Indicates boron content (0.0005–0.003%)

L: Indicates lead content (0.15–0.35%)

M: Designates merchant quality steel

E: Indicates electric-furnace steel

H: Indicates hardenability requirements

The SAE/AISI steel numbering designation system

	10XX	Plain carbon, Mn 1.00% max	
	11XX	Resulfurized free machining	
Carbon steels	12XX	Resulfurized/rephosphorized free machining	
	15XX	Plain carbon, Mn 1.00–1.65%	
Manganese steels	13XX	Mn 1.75%	
	23XX	Ni 3.50%	
Nickel steels	25XX	Ni 5.00%	
	31XX	Ni 1.25%, Cr 0.65-0.80%	
Nickel-	32XX	Ni 1.75%, Cr 1.07%	
chromium steels	33XX	Ni 3.50%, Cr 1 <mark>.50–1.57%</mark>	
	34XX	Ni 3.00%, Cr 0.77%	
	40XX	Mo 0.20-0.25%	
Molybdenum steels	44XX	Mo 0.40-0.52%	
Chromium– molybdenum steels	41XX	Cr 0.50-0.95%, Mo 0.12-0.30%	
Nickel-chromium-	43XX	Ni 1.82%, Cr 0.50-0.80%, Mo 0.25%	
molybdenum steels	47XX	Ni 1.05%, Cr 0.45%, Mo 0.20-0.35%	
Nickel-	46XX	Ni 0.85–1.82%, Mo 0.20–0.25%	
molybdenum steels	48XX <	Ni 3.50%, Mo 0.25%	
	50XX	Cr 0.27-0.65%	
	51XX	Cr 0.80–1.05%	
Chromium steels	50XXX	Cr 0.50%, C 1.00% min	
	51XXX	Cr 1.02%, C 1.00% min	
	52XXX	Cr 1.45%, C 1.00% min	
Chromium– vanadium steels	61XX	Cr 0.60–0.95%, V 0.10–0.015%	
Tungsten– chromium steels	72XX	W 1.75%, Cr 0.75%	
	81XX	Ni 0.30%, Cr 0.40%, Mo 0.12%	
Nickel-chromium-	86XX	Ni 0.30%, Cr 0.40%, Mo 0.12%	
molybdenum steels	87XX	Ni 0.55%, Cr 0.50%, Mo 0.20%	
	88XX	Ni 0.55%, Cr 0.50%, Mo 0.25%	
Silicon– manganese steels	92XX	Si 1.40–2.00%, Mn 0.65–0.85%, Cr 0–0.65%	
	93XX	Ni 3.25%, Cr 1.20%, Mo 0.12%	
Nickel-chromium-	94XX	Ni 0.45%, Cr 0.50%, Mo 0.12%	
molybdenum steels	97XX	Ni 0.55%, Cr 0.20%, Mo 0.20%	
	98XX	Ni 1.00%, Cr 0.80%, Mo 0.25%	

SAE Bearing Steel Naming System

